The synthesis of alumina nanowires on the surface of a porous alumina membrane

نویسندگان

  • R. S. McGrath
  • M. Misra
  • G. P. Sklar
چکیده

Porous aluminum oxide membranes with a complete and even covering of alumina nanowires were formed in a one-step anodization process in dilute phosphoric acid electrolyte. The anodizing conditions can be adjusted to start forming alumina wires that originate on the surface of the porous alumina layer at the triple junction points (the edges of the hexagonal inter-pore structure where three pores meet). The wires tangle together as they become longer; eventually creating a tangled mesh layer above the porous oxide layer. SEM micrographs of the oxide cross section show tapered wires that are approximately 2 to 10μm long, depending on anodizing time, and range in width from a few nanometers to 50nm. The aluminum substrate can be chemically removed and the alumina barrier layer dissolved to leave a free standing porous alumina membrane with very high surface area alumina wires on one face. Some possible future applications of this high surface area structure involve filtration of liquids and gasses, combined with chemical functionalization on the large surface area.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis and characterization of α-Alumina membrane supports and the binding effect of Poly (Vinyl Alcohol)

Ceramic Ultrafiltration membranes are considered as an alternative for the treatment of both stable water-in-oil and oil-in-water emulsions proved to be more effective in comparison with other conventional techniques. In this study, symmetric macro-porous ceramic membranes are prepared through dry pressing of α-alumina powder and the addition of various binders including Poly (vinyl alcohol). T...

متن کامل

Synthesis and characterization of α-Alumina membrane supports and the binding effect of Poly (Vinyl Alcohol)

Ceramic Ultrafiltration membranes are considered as an alternative for the treatment of both stable water-in-oil and oil-in-water emulsions proved to be more effective in comparison with other conventional techniques. In this study, symmetric macro-porous ceramic membranes are prepared through dry pressing of α-alumina powder and the addition of various binders including Poly (vinyl alcohol). T...

متن کامل

Synthesis, Characterization and Vapor Permeation Performance of B-ZSM-5 Membranes

In the present work, B-ZSM-5 zeolite membranes were synthesized on porous tubular α-alumina supports by several subsequence in situ crystallization hydrothermal treatments. The TiO2- Bohmite and ɣ- alumina intermediate layers were applied to improve the lattice matching between zeolite layer and the support. The uniform membrane intermediate layers with low permeation resistance were...

متن کامل

An Optimum Routine for Surface Modification of Ceramic Supports to Facilitate Deposition of Defect-Free Overlaying Micro and Meso (Nano) Porous Membrane

In this work, a simple and effective way to modify the support surface is developed and a nanostructure ceramic support to facilitate deposition of a defect-free overlying micro and meso (nano) porous membrane is obtained. To achieve high performance nanocomposite membranes, average pore size of outer surface of support was reduced by dip-coating in submicron and nano α-alumina slurries. In...

متن کامل

1. Aluminum anodization

The history of electrochemical oxidation of aluminum dates back to the beginning of the last century. Anodic treatment of aluminum were intensively investigated to obtain protective and decorative films on its surface [1]. More recently, applications of porous alumina with a huge surface area and a relatively narrow pore size distribution have been exploited [2]. For example, several attempts t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005